
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 6, JUNE 2017 1365

CrowdTranscoding: Online Video Transcoding
With Massive Viewers

Qiyun He, Member, IEEE, Cong Zhang, Student Member, IEEE, and Jiangchuan Liu, Fellow, IEEE

Abstract—Driven by the advances in personal computing devices
and the prevalence of high-speed network accesses, crowdsourced
livecast platforms have emerged in recent years, through which
numerous broadcasters lively stream their video content to
fellow viewers. Compared to professional video producers and
broadcasters, these new generation broadcasters are highly
heterogeneous in terms of the network/system configurations and,
therefore, the generated video quality, which calls for massive
encoding and transcoding in order to unify the video sources
and serve multiple quality versions to viewers with different
configurations. On the other hand, with the rapid evolution in
the hardware industry, high-performance processors become
mainstream in personal computer market. More end devices can
easily transcode high-quality videos in realtime. We witness huge
computational resource among the massive fellow viewers that
could potentially be used for transcoding. In this paper, we propose
CrowdTranscoding, a novel framework for crowdsourced livecast
systems that offloads the transcoding assignment to the massive
viewers. We identify that the key challenges in CrowdTranscoding
are to detect qualified stable viewers and to properly assign them
to the source channels. We put forward a viewer crowdsourcing
transcode scheduler to smartly schedule the workload assignment.
Our solution has been evaluated under diverse viewer/channel
conditions as well as different parameter settings. The trace-driven
simulation confirms the superiority of CrowdTranscoder, while
our PlanetLab-based and real world end-viewer experiments
show the practical performance of our approach, which also give
hint to the further enhancement.

Index Terms—Video transcoding, livecast, crowdsourcing.

I. INTRODUCTION

CROWDSOURCING was first introduced in 2005 by
Merriam-Webster as a way to obtain resources by collect-

ing contributions from crowds of people, instead of employees
or suppliers [1], [2]. With the advances of personal comput-
ing devices and the prevalence of high speed Internet accesses,
crowdsourced livecasting [3]–[5] has emerged in the market,
which has seen explosive growth recently. In such systems, nu-
merous amateur broadcasters lively stream their video contents
to viewers around the world. Fellow viewers watching the same

Manuscript received July 6, 2016; revised November 22, 2016; accepted
December 1, 2016. Date of publication January 11, 2017; date of current version
May 13, 2017. This work was supported by the NPRP under Grant 8-519-1-108
from the Qatar National Research Fund (a member of Qatar Foundation). The
associate editor coordinating the review of this manuscript and approving it for
publication was Dr. Lingfen Sun.

The authors are with the School of Computing Science, Simon Fraser Uni-
versity, Burnaby, BC V5A 1S6, Canada (e-mail: qiyunh@cs.sfu.ca; congz@cs.
sfu.ca; jcliu@cs.sfu.ca).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2017.2652061

channel constantly interact with each other and the channel
broadcaster through chatting messages. One of the most suc-
cessful examples, Twitch TV, has 35,610 concurrent broadcast-
ers and more than 2 million concurrent viewers during peak time
in 2015. The total stream time was more than 241 billion minutes
through the whole year [6]. The viewers are also more active
in such interactive livecast platforms. For example, the average
monthly watch time spent by each viewer was 421.6 minutes
on Twitch TV, while it was only 291.0 minutes for Youtube [6].
While Twitch TV is dominating the global market overall, we
have also seen some regional diversities, such as Douyu TV,1

Panda TV,2 Inke3 in China, and Afreeca TV,4 Azubu TV5 in
South Korea. On the other hand, livecast channel-based online
communities with social relationships have also emerged [4],
[7], and active viewers have shown strong willingness to support
the platforms and broadcasters, through donation and monthly
subscription.

Given that most of the broadcasters are non-professionals, the
content formats and quality can be much more heterogeneous
than the early generation of video streaming systems, which
typically use P2P (Peer-to-Peer) or CDN (content distribution
Networks) [8]–[10] to distribute professionally produced and
readily available video content. There is a strong need to unify
video contents into industrial standard representations. Facing
the dramatic scalability challenges, cloud computing becomes a
preferred solution for crowdsourced livecast platforms to handle
video ingesting and transcoding [3], [11], [12]. However, video
transcoding is computation-intensive [13]. As we measured us-
ing an Amazon AWS m3.large server, transcoding a source
video from 1080p to 720p, 480p, 360p, 240p takes around 73%,
54%, 42%, 35% CPU usage, respectively. This means a general
cloud instance can only conduct at most two transcoding tasks
simultaneously. And thus given the large number of concurrent
live channels on these platforms, a pure cloud-based approach
for video transcoding is expensive. For that reason, real-world
platforms only provide transcoding service to a small portion of
broadcasters. For example, Twitch TV only offers transcoding
service to its premium broadcasters, which make up only 1% to
1.5% of all broadcasters. Moreover, the requirement on stream-
ing latency in such interactive environment is stringent, as a
long latency severely affects the viewer-broadcaster interactive

1[Online]. Available: https://www.douyu.com
2[Online]. Available: http://www.panda.tv
3[Online]. Available: https://www.inke.cn
4[Online]. Available: http://www.afreeca.tv
5[Online]. Available: http://www.azubu.tv

1520-9210 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

1366 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 6, JUNE 2017

experience [14]. In a pure cloud-based system, due to the ser-
vice and budget limitation, the actual physical server however
may be far away from the live source, which inevitably causes
higher streaming latency. We therefore want to seek for more
budget-efficient solutions to provide transcoding and streaming
service with shorter latency.

In the livecast platforms, we also see huge potential crowd-
sourcing computational resources on the massive viewer side.
As we measured on Twitch TV, the concurrent viewer number is
always 20–50 times more than the channel number, and only top
10% of the channels need to be considered as they attract more
than 98% of the total viewers. Additionally, for major crowd-
sourced livecast platforms such as Twitch TV, Azubu TV and
Dailymotion Games, their channel contents are mostly game
scenes or live gaming events, and most of their viewers are
gaming players, a great portion of whom possibly have high-
end system configuration that can easily handle the transcoding
jobs. Indeed, as most mainstream CPUs nowadays have high
performance [15], even a general purposed computer is able
to transcode while playing the streaming. Since major crowd-
sourced livecast platforms provide free service, it is hard for
them to deploy expensive dedicated servers for transcoding a
large number of channels. The potential of edge users in crowd-
sourced livecast systems was however ignored in the past, which
is indeed strong in such crowdsourced environment. We thus put
forward CrowdTranscoding, a novel framework to offload the
massive transcoding workload to the crowd of viewers, enabling
ABR/DASH for more livecast channels. Notably, from the ar-
chitectural perspective, we base our system on fog computing,
which extends the cloud computing paradigm to the edge of
the network [16]. It is also worth mentioning that the nature of
our proposed system is twofold, that is, from the perspective
of computational resources collaboration, it is a crowdsourced
system, while from the network perspective, it follows the fog
computing paradigm, as the workload is pushed to the edge of
the network.

The remainder of this paper proceeds as follows: Section II
analyzes the insights observed in our measurement and dis-
cusses the motivation. Section III presents an overview of using
viewers to transcode video content in crowdsourced livecast sys-
tems, and further implies the unique challenges. In Section IV,
we first formulate the problem of viewer to channel assign-
ment, and then put forward an efficient solution VCTS (Viewer
Crowdsourcing Transcode Scheduler) which minimizes the un-
desirable impacts on system performance. In Section V, we
evaluate our design through trace-driven simulations. To better
understand the practical performance of our system, we conduct
a PlanetLab-based experiment, and a realworld transcoding ex-
periment in Section VI. We further discuss issues implied by our
experiments and related enhancement in Section VII. Finally,
Section VIII concludes the paper and discusses potential future
directions.

II. OBSERVATIONS AND MOTIVATIONS

We have conducted two separate measurement studies on the
popular crowdsourced livecast platform Twitch TV, focusing on

Fig. 1. Viewer distribution in six continents during Oct. 21 to Nov. 21, 2015.

channel-related information and viewer behavior, respectively.
Our analysis on our latest data highlights the distinct characteris-
tics of such a new generation of crowdsourced livecast services.

A. Observations on Channels/Broadcasters

In the first measurement, we focus on the channels/
broadcasters side. From February 2015 to June 2015, we cap-
tured the data of the broadcasters from Twitch TV every five
minutes, using Twitch’s public Application Programming Inter-
face (API).6 This public API provides the game name, viewer
number, stream resolution, average fps, broadcaster language,
premium partner status (Yes/No), and some other related infor-
mation of every broadcast channel. It however does not provide
certain detailed information about the viewers, such as their
network conditions, choices of video resolution, or physical
distributions. The geographical and bandwidth information of
the broadcasters is not provided by this API, either. Therefore,
we rely on another dataset in [17] when estimating the network
conditions of viewers/broadcasters, and, for the geographic dis-
tribution of viewers, we use the data from [18] to represent the
global streaming traffic and demographic statistics.

Many of our observations from the Twitch TV data are con-
sistent with those from conventional video streaming systems,
e.g., heterogeneous and dynamic viewers [19], [20]. Yet the het-
erogeneity becomes much stronger, not only on the viewers’
side, but also on the broadcasters’ side. There is a variety of
source stream resolutions. From the data we captured on March
7, 2015 at 15:00 PST, we find 177 different resolutions ranging
from 116p to 1600p. Even for the source streams with the same
resolution, there are quite different bitrates. There is clearly
a need to unify these source streams into industrial standard
representations.

We also use the API provided by quantcast [18] to measure
the number of unique viewers located in 221 countries/regions
from Oct. 21 to Nov. 21, 2015, as shown in Fig. 1. It is clear
to see that despite of the unbalanced distribution in different re-
gions, the viewer base is huge, with abundant potential computa-
tional resource available. To better explore such viewer resource,

6[Online]. Available: http://dev.twitch.tv

HE et al.: CROWDTRANSCODING: ONLINE VIDEO TRANSCODING WITH MASSIVE VIEWERS 1367

Fig. 2. Fitting viewer distribution with Pareto distribution.

we further study the detailed viewer behavior in the following
subsection.

B. Observations on Viewer Behavior and Insights

To better understand the viewer behavior, we also had an-
other measurement study conducted capturing viewers’ online
traces of five popular Twitch channels (i.e., hearthstonefr,
monstercat, rocketbeanstv, twitchplayspokemon and
versuta), from January 25, to February 27, 2015. During this
measurement, we captured the “JOIN” message when any reg-
istered viewer joins the channel and the “PART” message when
the viewer leaves the channel. In total, we collected 11,314,442
“JOIN” records and 11,334,140 “PART” records.

The blue line in Fig. 2 shows the distribution of viewer online
duration of all observed viewers in the five channels. We see
that the majority of viewers tend to leave the channel in a short
time. More specifically, 90% of the viewers leave the channel
within 100 minutes. However, the longer a viewer is online,
the more likely this viewer will continue to be online. From
time to time, there have been lots of studies in the literature
indicating the consumption of web and media contents follows
the classic Pareto distribution, for both the media content pop-
ularity/lifespan [20], [21], and client behavior [22]. Inspired by
these empirical evidences, we also try to use a customized Pareto
distribution function to fit the viewer online duration where
α = 0.7 and xm = 2. The fitting function is shown as the red
imaginary line in Fig. 2.

Each channel also has slightly different viewer online
duration distribution. As shown in Fig. 3, the channel versuta
has a larger portion of its viewers with one-time online duration
less than 100 minutes than other four channels, while channel
monstercat has the least. In general, we see around 20% of
the viewers will stay online for more than one hour, though
this number varies from channel to channel. This indicates a
considerable portion of viewers are stable for non-stop video
transcoding. Some other statistics also imply the viability of
viewer-based transcoding. Fig. 4 shows the number of online
times of viewers during the measured period of 33 days. We see
around 5% of the viewers get online equal to or more than once
per day on average. Finally Fig. 5 shows the standard deviation

Fig. 3. CDF of viewer one-time online duration of five channels.

Fig. 4. CDF of viewer online frequency during measured period.

Fig. 5. CDF of standard deviation of viewer one-time online duration.

of the viewer online time. Overall around 80% of the viewers
have quite consistent online duration every time.

In short, in large crowdsourced livecast systems such as
Twitch TV with massive viewer base, a considerable portion
of concurrent viewers are potential resources for stable video
transcoding. On the other hand, the inherent challenges lie in the
viewers’ heterogeneity in terms of their stability and network-
ing/system performance, which calls for effective strategies to
distinguish viewers, and to appropriately make use of their
resource.

1368 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 6, JUNE 2017

III. CROWDTRANSCODING: ARCHITECTURE AND CHALLENGES

We now illustrate the overall architecture of our design. Glob-
ally, the system is divided into multiple regions, where each
region has its own regional datacenter (also referred to as “re-
gional server”) for ingesting source videos, assigning transcod-
ing viewers, recollecting transcoded video and forwarding the
processed streams for further delivery. For a single broadcaster,
his/her livecast content will first be encoded locally, and then
collected by the regional server through protocols such as RTMP
(Real Time Messaging Protocol) [14]. The parameter settings
for video encoding during this phase are decided by the broad-
casters and therefore may vary from person to person. However,
major service providers usually have several recommended set-
tings for encoding resolution and bitrate, for broadcasters to
choose based on their hardware configuration and upload band-
width availability. For example, Twitch TV has a detailed guide7

for video encoding and other broadcast setup. When the video
contents reach the regional server, several viewers will then be
selected for video transcoding according to certain criteria, or
requests will be sent to neighbor regions if such transcoding
viewers cannot be found locally. Leaving assigned viewers will
cause reassignment. At the selected viewers’ side, video con-
tents of different qualities are generated and sent back to the
regional datacenter. Finally, the transcoded video is forwarded
to other regional datacenters to serve all viewers.

Intuitively, the system is always balanced given there are
much more viewers than broadcasters overall. However, in re-
ality the viewer and broadcaster numbers are highly dynamic
over time, for both a single region and the whole global system,
as in such free systems users come and leave by their will. On
the other hand, viewers’ computational ability and networking
conditions are dramatically various. Different viewers also tend
to stay in the system for a different amount of time, and causal
selection may cause a large number of reassignments, leading
to high system overhead for recalculation and short absence of
the target quality version during the reassigning time. Reducing
cross-region assignment is our objective, too, as it increases the
streaming latency.

We assume all viewers are cooperative for the transcoding
assignment, with motivations such as exemption for advertise-
ments. In fact, other more advanced methods, such as auction
models, can also be introduced for the contributing viewers to
share advertising revenue with the service providers.

IV. PROBLEM FORMALIZATION AND SOLUTIONS

In this section we first formulate the problem, and then pro-
vide the key component of CrowdTranscoding – VCTS (Viewer
Crowdsourcing Transcode Scheduler) which can smartly assign
qualified stable viewers to live channels for transcoding. Note
that, as latency plays a critical role in livecast, all transcoding
candidates will be evaluated through a video transmission and
transcoding test, and candidates who do not meet the preset la-
tency criterion will be disqualified prior to any other selection.

7[Online]. Available: https://help.twitch.tv/customer/portal/articles/1262922-
open-broadcaster-software

TABLE I
NOTATIONS IN THE FORMALIZED PROBLEM

Name Description

t given time point
L live channel termination time
T (t) waiting threshold
p(x) Pareto distribution of viewers
s individual stability
d̄ average online duration
σ standard deviation of online duration
C set of live video broadcasters
V set of viewers
R set of regions
P candidate pool

Before illustrating the formalization in detail, we summarize
important notations in Table I.

A. Extracting Stable Transcoding Candidates

We want the selected viewers to be as stable as possible, so
that they can provide long time non-stop transcoding to mini-
mize the number of reassignment. Our observations in Section II
indicate that the stability of a viewer in general is proportional
to the existing time he/she has already spent in the channel.
Thus, we can set a waiting threshold T (t), after passing which
the viewer can be regarded as stable. Obviously the longer this
waiting threshold is, the more stable those left viewers are.
However, a longer threshold also means fewer viewers can be
qualified by this criterion, and more potential transcoding re-
source are wasted during the waiting process. Therefore, we
want to maximize the mathematical expectation of the non-stop
transcoding time of all viewers, given the viewer online dura-
tion distribution. Based on the data we captured, the probability
function of viewer distribution over online time can be estimated
as

p(x) =
αxα

m

xα+1 when x ≥ xm , typically α = 0.7 and xm = 2.

Thus, if a live channel terminates at time L, for any viewer enters
the channel at given time t, we want to find the optimal waiting
threshold T (t) that maximizes the mathematical expectation of
serving time of the viewer

argmax
T (t)

[∫ L−t

T (t) xp(x) dx +
∫ +∞

L−t (L − t)p(x) dx∫ +∞
T (t) p(x)dx

− T (t)
]

=

argmax
T (t)

[
T (t)α

(L − t)α−1(1 − α)
+

T (t)
α − 1

]
= (L − t)

(
1
α

) 1
1−α

.

The answer is found by making the derivative of T (t) inside [·]
to 0, which is

1
1 − α

− α

α − 1

(
T (t)
L − t

)α−1

= 0.

In the above formula,
∫ L−t

T (t) xp(x) dx and
∫ +∞

L−t (L − t)p(x) dx
are the accumulative transcoding time of stable viewer leaving
before and after the channel terminates, respectively. And the

HE et al.: CROWDTRANSCODING: ONLINE VIDEO TRANSCODING WITH MASSIVE VIEWERS 1369

whole part inside bracket [·] is the expectation of total transcod-
ing time of filtered stable viewers with waiting threshold T (t).
Typically, when α = 0.7, T (t) is approximately 0.304(L − t).
In reality, due to the dynamics of viewers, the value of α varies
from 0.5 to 0.9, and thus the optimal waiting threshold is from
0.25(L − t) to 0.34(L − t). In general, any viewer watching a
channel longer than 34% of the left time of that channel can be
regarded as qualified stable viewer candidate for transcoding.

B. Stability of Individual Viewer

Now that we have the optimal minimum online time threshold
to filter stable viewers in general, we also want to estimate the
stability of certain individual viewer. Some heuristics, such as
viewer age, gender and video quality [23], [24], can be used to
further estimate the individual stability in a fine-grained manner.
Here we use a simple heuristic that measures the average online
duration and standard deviation of a viewer’s online record,
denoted as d̄ and σ, respectively. We use a linear combination of
them to further estimates the individual stability of each viewer,
which is

s = λ · d̄ − (1 − λ) · σ; λ ∈ (0, 1).

The default λ is 0.8 in evaluations, which is acquired by ana-
lyzing our captured viewer trace. This heuristic in particular is
inspired by the fact that, a longer average online duration in-
dicates the viewer tends to stay longer, and a smaller standard
deviation means such behavior is more consistent. We leave it
for further study to find more sophisticated heuristic.

C. Selecting Stable Viewers for Transcoding: Initial Setup

We denote the live video broadcasters as a set C = {c1 ,
c2 , . . . , cm}, and viewers as V = {v1 , v2 , . . . , vn}. Let R =
{R1 , R2 , . . . , Rn} be the set of regions. For each participated
viewer, we evaluate his/her realtime transcoding ability and net-
working performance, which is conducted when the viewer is
already watching a live channel at Source quality. If any item
in the evaluation is lower than the corresponding threshold, this
viewer will be unqualified. For each region, all qualified view-
ers are put into a candidate pool, ranked in decreasing order of
their individual stability if known. Candidates with the highest
individual stability are the most preferred.

During this initial setup, due to the lack of knowledge of
detailed system condition, the scheduling is conducted in a con-
servative manner. That is, we guarantee the assignment for the
most popular live channels, to maximize the overall viewer QoE
(Quality of Experience). Ideally, if we need q + 1 quality ver-
sions for each channel, q qualified viewers are assigned to ev-
ery channel within the same region. For existing crowdsourced
livecast systems, this ideal situation is achievable overall as the
viewer base is much larger than the channel number all the time.
But due to the dynamics and randomness of the viewer behav-
ior, unbalanced viewer distribution across regions may happen,
in which case some transcoding viewers need to be “borrowed”
from the neighbor region. Algorithm 1 (VCTS I) shows such de-
tailed strategy for the initial setup. First, all channels are ranked
in decreasing order of their popularity (viewer number). In each

Algorithm 1: CrowdTranscoding – VCTS I
1: Sort C in decreasing order of their Popularity
2: Sort V in decreasing order of preference level in each

region
3: for i from 1 to |C| do
4: let region R be the region ci in
5: if there are enough viewer left in R then
6: assign first q viewers to ci for transcoding
7: else
8: rank all neighbor regions in increasing distance

with ci’s region
9: for each region R in the ranked region list do

10: try to assign q viewers to ci

11: if assignment succeeds then
12: break
13: else if all regions are tried then
14: terminate scheduler
15: end if
16: end for
17: end if
18: end for
19: return the schedule

region, candidate viewers are ranked in decreasing order of in-
dividual stability. For each channel, q most preferred candidates
is chosen in the same region for transcoding. If the regional can-
didate pool is empty, the scheduler tries to make the assignment
from the neighbor regions.

D. Maintaining the System and Handling Viewer Dynamics

The VCTS I indicates the initial setup. However, as both
viewers and channels are highly dynamic, rescheduling using
VCTS I at any change causes a large number of reassignments as
well as huge computational overhead of scheduling calculation.
Therefore, when maintaining the system, we are reluctant to
change any assignment once it is made, unless either the directly
related viewer or channel has state change.

To maintain the candidate pool, we can simply re-rank all can-
didates at any update, which however takes O(N) time every
update and O(1) time at the assignment time. It incurs signif-
icant calculation when N is large with frequent updates. Since
there are much more viewer updates than channel updates and
reassignments, and re-ranking is only conducted at the latter,
we can instead order candidates at the assignment time (taking
O(NlogN) only). Nonetheless, any extra time at the schedul-
ing moment is undesirable, as it increases the transcoding delay
and consequently the live streaming delay. Therefore, we seek
to combine both strategies, i.e., a better organization of the
candidates with minimized operational cost per update. Many
advanced organization structures can be applied in this context.
Using the simple and mature B+ tree as an example, we can
deploy a B+ tree in every region to organize all transcoding
candidates, where the ordering key is the preference (individual
stability index) of the candidate. Thus a single update operation
time is reduced to O(logN).

1370 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 6, JUNE 2017

Algorithm 2: CrowdTranscoding – VCTS II
1: Input: a message indicating 1) a viewer joins/leaves a

channel, or is qualified to be a stable viewer 2) a
channel starts/terminates

2: if message.action is channelStart then
3: assign top q viewers with highest preference from

candidate pool P
4: if candidate pool P does not have q viewers then
5: make assignment with left candidates in P ;
6: send message′ to nearest neighbor region with

unfinished assignments
7: end if
8: else if message.action is channelEnd then
9: release transcoding viewers for message.

channelID back to candidate pool P
10: else if message.action is qualified then
11: add message.viewerID into candidate pool P
12: else if message.action is part then
13: if viewer viewerID is assigned to any channel ci and

doing the transcoding then
14: if candidate pool P is not empty then
15: choose most preferred viewer in P to replace the

leaving viewer
16: else
17: send message′ to nearest neighbor region with

this assignment
18: end if
19: end if
20: remove message.viewerID from the candidate pool

P as the viewer leaves the system
21: end if

Algorithm 2 shows the system maintaining algorithm VCTS
II. When the system is running, any action will generate a mes-
sage recording the time, viewer/channel ID, and the action type
(join, qualified, part, channelStart or channelEnd). Ac-
cording to the message, qualified viewers will be inserted into
the B+ tree; Starting channel will be assigned with transcod-
ing candidates; Terminating channel (i.e., message.action is
channelEnd) will release its transcoding viewers back to the
pool; Leaving candidate (i.e., message.action is part) will be
remove from the tree, or be replaced if already assigned.

V. PERFORMANCE EVALUATION

To evaluate our framework, we have conducted extensive
simulations using large scale data captured by Twitch API. We
first briefly introduce the selected datasets, and then continue
on to present the methodology as well as the evaluation results.

A. Data Sets and Traces

Our channel-based viewer trace data captured with Twitch
API contains the join/leave record of viewers in certain chan-
nel from January 25 to February 27, 2015. Each record mes-
sage includes the viewer ID, time of the action and the ac-
tion type (join or leave). We also record the instant time-based

Fig. 6. Viewer number to qualified channel number ratio (V/C Ratio) over
time.

information of all channels, once every five minutes, from
February 2015 to June 2015. In each time-based record we
have the detailed information of all live channels at capturing
time. The total channel number and viewer number are there-
fore logged together over time, which is used to estimate the
average channel to viewer ratio in our simulation. On the other
hand, the skewness of the channel popularity is extremely high,
and top 10% channels attract around 98% of the total viewers.
We therefore only regard those top 10% channels as qualified
channels. Fig. 6 shows viewer number, channel number and the
viewer to qualified channel ratio (referred as viewer-to-channel
ratio, or V/C ratio), from March 1 to March 7, 2015. We see in
general the V/C ratio is between 200 to 500, which means at
least 200 viewers, or around 84 qualified viewers can serve one
channel for transcoding all the time, considering 30% mobile
and 40% unqualified viewers.

B. Methodology

For comparison, we implemented four strategies: Top-N
with dedicated servers/cloud, and VCTS using online viewers /
qualified stable viewers / most preferred qualified stable view-
ers. Top-N, the current strategy of Twitch TV, provides full
video representation set to the top N most popular broadcasters,
but only the original video quality for the rest of the broad-
casters. We set N = 300, estimated according to the Twitch
partner program8 requirements and the trace data we collected.
For each transcoded channel, we assume there will be equal
number of viewers watching each video quality version, while
for channels streaming only at source quality, we assume their
viewers watch the original quality version even without enough
bandwidth, in which case video stall will happen. We regard
three hours as the average channel duration and randomly gen-
erate channel records over viewer records with different average
viewer-to-channel ratio. We also set the default waiting thresh-
old to the optimal value calculated in Section IV which is 60
minutes in this case. Given the sufficient viewer number, for
simplicity we set the threshold fixed, instead of exactly 33%
of the channel remaining time. We use Reassignment count,

8[Online]. Available: http://www.twitch.tv/p/partners

HE et al.: CROWDTRANSCODING: ONLINE VIDEO TRANSCODING WITH MASSIVE VIEWERS 1371

Fig. 7. Reassignment count of VCTS with different viewer selection
strategies.

Fig. 8. Cross-region assignment count of VCTS with different strategies.

Cross-region assignment count as metrics to measure our simu-
lation results.

C. Assignment Quality and Cost

We first conduct simulations to investigate the impacts of
different viewer selection strategies for VCTS under default
settings. Fig. 7 shows the reassignment counts under different
V/C ratios (X axis). In our simulation, the case with 120 V/C
ratio is the real world scenario on average, and we also have
several other cases to reflect the system dynamics. We see strat-
egy “online viewers” has the highest reassignment count, which
is around 50% more than that of strategy “qualified viewers”.
The strategy “preferred qualified viewers” performs the best,
indicating the great improvement of using preference regarding
to the individual stability.

In the meanwhile, we also measure the number of cross-region
assignments. Fig. 8 shows the difference of three strategies for
VCTS. Clearly, the strategy “online viewers” has the fewest
cross-region assignments. Such result is because this approach
has the largest candidate pool and thus less likely to overrun the
availability limit. Strategies “qualified viewers” and “preferred
qualified viewers” have similar results, with around 20% more
than that of “online viewers”. Their similarity is because a better

Fig. 9. Bandwidth comparison of Top-N and VCTS.

Fig. 10. Qualified stable viewer ratio under different waiting thresholds.

organization of the viewer pool does not mitigate the availabil-
ity overrun situation; Their small difference is caused by their
different scheduling results.

As the Top-N approach is implemented by the cloud or
dedicated servers, there is no cross-region assignment and re-
assignment for comparison. However, in terms of the outbound
bandwidth, Top-N has around 6.16% and 5.82% more band-
width consumption than VCTS at peak and valley time, re-
spectively (as shown in Fig. 9). This is because in the Top-N
approach, a portion of viewers without enough bandwidth are
forced to watch at the Source bitrate. They end up with playback
stalls but still consume more bandwidth than watching a lower
quality version. When VCTS is deployed, they switch to lower
quality versions, which lowers the total bandwidth consump-
tion. Note that the real-world situation for bandwidth however
may vary dramatically from region to region, while the result in
our simulation provides a more generic view.

D. Impacts of Waiting Threshold

We further conduct simulation to evaluate influence of waiting
thresholds. We first check the ratio of qualified stable viewers
of total viewers with different waiting thresholds, as shown in
Fig. 10. We see from time to time there are around 60%, 50%,
and 30% qualified stable viewers with waiting threshold 60, 90,
180 minutes, respectively. This indicates we have more freedom

1372 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 6, JUNE 2017

Fig. 11. Reassignment count and cross-region assignment count (V/C
ratio = 200).

Fig. 12. Reassignment count and cross-region assignment count (V/C
ratio = 80).

to choose a larger waiting threshold for real world systems like
Twitch TV with massive viewer base.

To further verify this, we measure the reassignment count and
cross-region assignment count of VCTS with strategies “quali-
fied viewers” and “preferred qualified viewers” under two V/C
ratios, as shown in Figs. 11 and 12. These two V/C ratios (200
and 80) are average maximum and minimum values observed
from the Twitch dataset. Under both ratios, strategy “qualified
viewers” has its reassignment count dropping fast with the in-
creasing threshold, while strategy “preferred qualified viewers”
has more stable results. This confirms that preferred viewers are
the most stable ones. In terms of the cross-region assignment,
both strategies have similar results, which is consistent with the
former simulation. When the waiting threshold is larger than
200 minutes, any reduction in reassignment count is at huge
expense of increasing cross-region assignment count. This is
because the system overruns the candidate availability more
frequently, though the selected viewers are more stable. Consis-
tently, cases with lower V/C ratio has much higher reassignment
count and cross-region assignment count when other parameters
are the same.

In conclusion, the large viewer base and V/C ratio allow us
to have a larger waiting threshold up to 200 minutes, although

Fig. 13. Extra streaming delay measured at each regional server (CDF).

the benefit of careful candidate pool organization cannot be
achieved by simply increasing the waiting threshold.

VI. PROTOTYPE AND EXPERIMENTAL STUDY

We further conduct a PlanetLab-based experiment and a real-
world experiment to see the practical performance of our design
and the actual end-viewer transcoding performance.

A. Prototype Implementation and Measurement

We implemented a prototype of our system on the PlanetLab.
In our prototype, we use 5 PlanetLab nodes with similar net-
work conditions as regional servers, 2 in North America (NA),
1 in Asia and 2 in Europe (EU), and other nodes as viewers. In
total 213 nodes are used. During the experiment, each viewer
node imitates an actual viewer behavior by joining the nearest
regional server at a random time, staying for an duration accord-
ing to the Pareto distribution, and leaving. The above operation
is independent from other viewer nodes, and will be conducted
repeatedly. The regional servers maintains the stable candidate
pool for its region. The most preferred candidate is selected to
use ffmpeg to transcode a high quality video sent from the re-
gional server using TCP, into a low quality version, which is
then sent back to the server. We use a 3.5 Mbps 1080p video as
our source video and set 2.5 Mbps 720p as the target quality.
Each video slice is of 1 second. Note that there are actually
more parameter settings for transcoding besides resolution and
bitrate, among which the “speed” property affects the transcoded
video quality the most. In ffmpeg the “speed” can be set from
“veryslow” to “ultrafast”. During our experiment, we choose
a conservative strategy to use the default “median” option for
speed to have a relative good video quality without sacrificing
too much time. In reality however, this parameter should be de-
cided by the nature and focus of live channel, i.e., whether the
clear frame is more important, or the short interactive latency.

We first measured the extra streaming delay of all the nodes
under the corresponding regional server, shown in Fig. 13. We
see the delay difference varies from region to region. All Video
sources from NA have the extra delay less than 8 seconds, while
sources from other regions have higher extra streaming delay.
The variance indicates we need to have a pre-set delay to cope

HE et al.: CROWDTRANSCODING: ONLINE VIDEO TRANSCODING WITH MASSIVE VIEWERS 1373

Fig. 14. Stable viewer to online viewer ratio and extra streaming delay over
time.

with the delay change caused by the reassignment. We then focus
on an experiment conducted on a NA regional server. As shown
in Fig. 14, the blue line is the stable viewer to all online viewer
ratio, oscillating around 50% to 60%, which is consistent with
our observation on Twitch data. The green line indicates the extra
live streaming delay measured by recording the transmission
and transcoding time of every 1-second video slice. Clearly, the
extra delay time changes dramatically at time 3.5 minutes and
51 minutes, which is caused by two reassignment events.

The experiment shows our system can run smoothly, but it also
indicates the existence of sudden change of streaming delay due
to reassignment events, which calls for having a pre-set delay to
prevent playback stall cause by such events.

B. End-Viewer Transcoding Experiment

To better understand the transcoding ability of real end-
viewers instead of PlanetLab virtual machines, we conducted
another experiment with 8 devices of different CPU types. These
8 CPUs are popular representatives that power up most home
computers and personal PCs in the current market. We use VLC
to do H.264 transcoding for a 1080p video (3.5 Mbit/s) to lower
quality versions while the device is playing a live streaming
at Source quality from a channel on Twitch TV. Similar to the
previous prototype experiment, we also use the default option
for speed and other transcoding parameter settings. For compar-
ison, we also measured the transcoding time of the 720p video
quality when the device was idle (denoted as 720p*). Some de-
vices were equipped with dedicated GPUs and we note them as
“[*]” after the CPU name.

Table II shows the experiment results in form of transcod-
ing time to video playback time ratio. The device is capable of
doing corresponding real-time transcoding only if the ratio is
below 100%. All processors except Intel Core 2 Duo are able to
handle real-time transcoding for 480p or lower quality versions.
Transcoding for 720p version however is more computationally
intense, as only top 3 devices manage to proceed in real time.
Notably, during the experiment, the viewing QoE of all devices
is almost not affected, and the lack of computational ability is
mainly revealed by the long transcoding time. The experimen-
tal results confirm the real-time transcoding ability of modern

CPUs, and it also suggests to distinguish different unqualified
viewers, some of whom can be helpful for transcoding lower
quality versions.

VII. FURTHER ENHANCEMENTS

Regarding to the practical performance of our framework, we
next present three enhancements that further improve the system
performance under diverse conditions.

A. Categorizing Median Viewers and Enabling
Collaborative Transcoding

In VCTS, we set strict threshold on viewer computational
ability and networking performance, and therefore a consider-
able portion of median viewers are not qualified as candidates.
These median viewers refer to those who are capable of watch-
ing at source resolution and still have idle computational and
networking resource, though the extra resource is not enough
to handle one complete transcoding assignment for a high tar-
get quality version, such as 720p. In fact, as we see from our
realworld experiment, some viewers are capable of transcoding
lower quality versions except for the 720p. Though being un-
qualified, these median viewers can contribute for most lower
quality versions, or even high quality versions if they collab-
oratively use their idle resource. On the other hand, due to
the dynamics of the system, it is possible that in certain re-
gion the availability of qualified stable viewers suffers overrun,
causing the increase of cross-region assignments or even failed
assignments.

To deal with such system dynamics, we can categorize these
median viewers into different levels in terms of their idle re-
source, and use additional secondary B+ trees to organize me-
dian viewers from each level. The VCTS thus can be modified
such that if the size of the primary B+ tree (candidate pool P) is
below certain level, median viewers in secondary B+ trees can be
assigned for transcoding assignment of lower quality versions;
If the primary B+ tree suffers overrun, N of median viewers
will be chosen to collaboratively transcode one target version,
where N relates to the category level of selected viewers. In the
latter case, each selected viewer works on a smaller video slice
independently and returns the transcoded slice to the regional
server, where the video slices are reordered and forwarded to
viewers/CDNs all over the world.

B. Hybridization With Dedicated Servers to Reduce
Streaming Latency

The PlanetLab-based experiment shows the additional
streaming latency caused by deploying VCTS. Although the
extra latency is small and acceptable, due to the critical require-
ment of livecast, any further optimization on video latency is
beneficial. Our framework can be hybridized with dedicated
transcoding servers. The original video stream is then divided
into sliceA and sliceB iteratively instead of single slices of
same length. Once the sliceA is created, it is forwarded to
the assigned viewers for transcoding, and after a while, when
the sliceB is generated, it is sent to the dedicated servers for

1374 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 6, JUNE 2017

TABLE II
TRANSCODING TIME TO VIDEO PLAYBACK TIME RATIO OF DIFFERENT DEVICES WHILE PLAYING LIVE STREAMING AT Source QUALITY

CPU type 720p* 2.5 Mbit/s 720p 2.5 Mbit/s 480p 1.2 Mbit/s 360p 0.8 Mbit/s 240p 0.5 Mbit/s

Intel i7-3770 @3.40 GHz × 4 33.7% 59.6% 25.0% 17.5% 14.5%
Intel i7-3630QM @2.4 GHz × 4 [*] 45.5% 58.2% 33.1% 24.7% 19.7%
Intel i5-2400 3.1 GHz × 2 53.5% 66.7% 38.4% 27.8% 19.2%
Intel i5-3210M 2.50 GHz × 2 90.6% 113% 68.6% 43.1% 34%
Intel i5-4250U 1.3 GHz × 2 116.3% 191.5% 92% 70.8% 51.2%
AMD a10-4600M 2.3 GHz × 2 [*] 104.3% 143.3% 77.5% 59.4% 48.2%
Intel i3-2310M 2.10 Ghz × 2 [*] 130.0% 155.8% 90.0% 60.3% 44.4%
Intel Core 2 Duo 2.53 GHz × 2 86.7% 190.5% 171.1% 112.3% 76.9%

processing. When both pieces are processed and returned, they
are combined back as one single video slice and delivered to
end-viewers. Since the data transfer time and video transcod-
ing time are usually longer for the transcoding viewers than the
dedicated servers, the ideal situation is the processed slice′A and
slice′B return at the same time, in which case the extra stream-
ing delay of the hybridized VCTS is exactly the same as the
transcoding system with dedicated servers. If sliceB is much
smaller than sliceA , then the dedicated resource required in this
hybridized system is very small. In addition, such hybridiza-
tion is only needed for higher quality target versions (such as
720p, 480p), since streaming latency of lower quality versions
transcoded by viewers is shorter and even less than the opti-
mized latency of high quality versions. This further decreases
the dedicated resourced needed.

Hybridization with dedicated transcoding servers can effi-
ciently decrease the livecast latency, at only small expense of
dedicated resource, though we do need to carefully consider
the decision on length selection for sliceA and sliceB , and the
overhead caused by any extra video dividing/combining.

C. Community Interaction and Synchronization

As mentioned, a new trend in the crowdsourced livecast sys-
tems is that the channels-based communities of fellow viewers
have emerged as a platform for communicating with each other,
as well as interacting with the broadcaster. The communication
in these communities are mostly done through text messages,
which can be easily transferred, processed, and posted in re-
altime. The latency of the live streaming itself however varies
from viewer to viewer due to the difference of their connection
to the regional servers/CDNs. With VCTS being deployed, the
variation of end-to-end latency becomes even more dramatic, as
the processing time of each target version varies given the het-
erogeneous transcoding viewers. Often the case, a much more
delayed viewer comments on a scene watched by others a while
ago. This issue becomes more severe when it comes to some
channels in which the game is collaboratively played by all the
viewers. For example, in the channel Twitch Plays Pokemon,9

fellow viewers play the game Pokemon together by typing com-
mands into chat. If the delays of the video streams vary largely,
viewers will have unsynchronized game information and thus
give misleading command.

9[Online]. Available: http://www.twitch.tv/twitchplayspokemon/profile

The existing Twitch implementation does not address the out-
of-sync issue, which substantially affect the viewers’ iterative
experience [14]. We observe that except the synchronization of
different quality versions, the video rate also plays a key role in
controlling the live streaming latency, since the initial latency
time is mainly decided by the buffering time, and every time the
video discontinues due to an out-of-buffer event, the re-buffering
time adds to the latency. We want to adapt the video rate so that
the live streaming is synchronized at all end viewers. However,
since each end viewer has different local time, and even viewers
located in the same timezone have different system time due to
the heterogeneity, we unfortunately cannot use the viewer’s time
to synchronize the video frame. We observe the time stamp on
each chatting message can be regarded as a fair reference due
to its low latency. To this end, we propose a revised DASH
mechanism with text messaging based synchronization. In this
approach, both the video slice and chat message will be marked
with the instant time of the regional server. A reasonable delay
time d is set such that the video slice with time stamp t should be
played after d second of getting chat message with time stamp
t. The client thus adapts the video quality version based on such
synchronization mechanism. The delay time d should also be
dynamically adjusted according to the viewer feedback of their
network conditions.

As such, despite of the difference in video processing time and
network configurations, heterogeneous end-viewers can better
synchronize their live streaming with other peer-viewers.

VIII. CONCLUSION

In this paper, we examined the emerging crowdsourced live-
cast systems, in which both the broadcasters and the viewers are
in massive number and can be highly heterogeneous. Through
our measurement on the major crowdsourced livecast system,
on the one hand, we see the need to unify the source video
and to provide multiple industrial standard quality versions for
diverse viewers, on the other, we also find huge potential on
the massive viewer side for video transcoding. We presented
a generic framework CrowdTranscoding with VCTS that can
smartly assign qualified stable viewers to channels for transcod-
ing assignment. Our trace-driven simulation proved the superi-
ority of our design, while our PlanetLab-based experiment and
end-viewer transcoding experiment further revealed a series of
potential issues and suggested corresponding enhancements to-
ward practical deployment.

HE et al.: CROWDTRANSCODING: ONLINE VIDEO TRANSCODING WITH MASSIVE VIEWERS 1375

In the future work, we plan to conduct experiments in larger
scales. We are also interested in exploring the hybridization of
CrowdTranscoder with the dedicated transcoding servers to im-
prove the streaming performance, and in particular to explore the
optimal solution to dynamically fragment video slices in order
to have shortest end-to-end streaming latency. There is also need
to study the dynamic pattern of viewers and broadcasters inside
each region, after which we can further study the strategy for
adapting viewer qualifying criteria, given the viewer-to-channel
ratio and workload change dynamics.

ACKNOWLEDGMENT

The findings achieved herein are solely the responsibility of
the authors.

REFERENCES

[1] J. Ross, L. Irani, M. Silberman, A. Zaldivar, and B. Tomlinson, “Who
are the crowdworkers?: Shifting demographics in mechanical Turk,” in
Proc. CHI’10 Extended Abstracts Human Factors Comput. Syst., 2010,
pp. 2863–2872.

[2] T. Hoßfeld et al., “Best practices for QoE crowdtesting: QoE assessment
with crowdsourcing,” IEEE Trans. Multimedia, vol. 16, no. 2, pp. 541–558,
Feb. 2014.

[3] F. Chen, C. Zhang, F. Wang, J. Liu, X. Wang, and Y. Liu, “Cloud-assisted
live streaming for crowdsourced multimedia content,” IEEE Trans.
Multimedia, vol. 17, no. 9, pp. 1471–1483, Sep. 2015.

[4] M. Kaytoue, A. Silva, L. Cerf, W. Meira, Jr., and C. Raı̈ssi, “Watch
me playing, i am a professional: A first study on video game live
streaming,” in Proc. 21st Int. Conf. Companion World Wide Web, 2012,
pp. 1181–1188.

[5] Q. He, J. Liu, C. Wang, and B. Li, “Coping with heterogeneous video con-
tributors and viewers in crowdsourced live streaming: A cloud-based ap-
proach,” IEEE Trans. Multimedia, vol. 18, no. 5, pp. 916–928, May 2016.

[6] “2015 Retrospective—Twitch.,” Accessed on Nov. 11, 2016. [Online].
Available: https://www.twitch.tv/year/2015

[7] W. A. Hamilton, O. Garretson, and A. Kerne, “Streaming on Twitch:
Fostering participatory communities of play within live mixed media,” in
Proc. SIGCHI Conf. Human Factors Comput. Syst., 2014, pp. 1315–1324.

[8] S. Traverso et al., “Unravelling the impact of temporal and geographical
locality in content caching systems,” IEEE Trans. Multimedia, vol. 17,
no. 10, pp. 1839–1854, Oct. 2015.

[9] M. Mu et al., “P2P-based IPTV services: Design, deployment, and QoE
measurement,” IEEE Trans. Multimedia, vol. 14, no. 6, pp. 1515–1527,
Dec. 2012.

[10] G. Zhang, W. Liu, X. Hei, and W. Cheng, “Unreeling Xunlei Kankan: Un-
derstanding hybrid CDN-P2P video-on-demand streaming,” IEEE Trans.
Multimedia, vol. 17, no. 2, pp. 229–242, Feb. 2015.

[11] F. Wang, J. Liu, and M. Chen, “CALMS: Cloud-assisted live media stream-
ing for globalized demands with time/region diversities,” in Proc. INFO-
COM, 2012, pp. 199–207.

[12] X. Wang, M. Chen, T. T. Kwon, L. Yang, and V. C. Leung, “AMES-cloud:
A framework of adaptive mobile video streaming and efficient social
video sharing in the clouds,” IEEE Trans. Multimedia, vol. 15, no. 4,
pp. 811–820, Jun. 2013.

[13] S. Wang and S. Dey, “Adaptive mobile cloud computing to enable rich
mobile multimedia applications,” IEEE Trans. Multimedia, vol. 15, no. 4,
pp. 870–883, Jun. 2013.

[14] C. Zhang and J. Liu, “On crowdsourced interactive live streaming: A
twitch. TV-based measurement study,” in Proc. 25th ACM Workshop Netw.
Operating Syst. Support Digital Audio Video, 2015, pp. 55–60.

[15] “CPU Popularity,” Accessed on Oct. 1, 2016. [Online]. Available:
http://www.cpubenchmark.net/share30.html

[16] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the Internet of things,” in Proc. 1st Ed. MCC Workshop Mobile
Cloud Comput, 2012, pp. 13–16.

[17] S. Basso, A. Servetti, E. Masala, and J. C. De Martin, “Measuring dash
streaming performance from the end users perspective using neubot,” in
Proc. 5th ACM Multimedia Syst. Conf., 2014, pp. 1–6.

[18] “Twitch traffic and demographic statistics,” Accessed on Aug.
20, 2016. [Online]. Available: https://www.quantcast.com/twitch.tv?
country=MY#!countries

[19] B. Li, Z. Wang, J. Liu, and W. Zhu, “Two decades of internet video stream-
ing: A retrospective view,” ACM Trans. Multimedia Comput. Commun.
Appl., vol. 9, no. 1s, 2013, Art. no. 33.

[20] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “YouTube traffic characterization:
A view from the edge,” in Proc. 7th ACM SIGCOMM Conf. Internet Meas.,
2007, pp. 15–28.

[21] X. Cheng, J. Liu, and C. Dale, “Understanding the characteristics of
Internet short video sharing: A YouTube-based measurement study,” IEEE
Trans. Multimedia, vol. 15, no. 5, pp. 1184–1194, Aug. 2013.

[22] K. Sripanidkulchai, B. Maggs, and H. Zhang, “An analysis of live stream-
ing workloads on the internet,” in Proc. 4th ACM SIGCOMM Conf. Inter-
net Meas., 2004, pp. 41–54.

[23] F. Dobrian et al., “Understanding the impact of video quality on user
engagement,” in Proc. ACM SIGCOMM Comput. Commun. Rev., vol. 41,
no. 4, 2011, pp. 362–373.

[24] S. S. Krishnan and R. K. Sitaraman, “Video stream quality impacts
viewer behavior: Inferring causality using quasi-experimental designs,”
IEEE/ACM Trans. Netw., vol. 21, no. 6, pp. 2001–2014, Dec. 2013.

Qiyun He (S’16–M’16) received the B.Eng. degree
from Zhejiang University, Zhejiang, China, and the
B.Sc. degree from Simon Fraser University, Burnaby,
BC, Canada, both in 2015, and is currently working
toward the M.Sc. degree in Computing Science at
Simon Fraser University.

His research interests include cloud computing,
social media, multimedia systems, and networks.

Cong Zhang (S’14) received the M.S. degree in in-
formation engineering from Zhengzhou University,
Zhengzhou, China, in 2012, and is currently working
toward the Ph.D. degree in computing science at Si-
mon Fraser University, Burnaby, BC, Canada.

He is currently working with the Network Model-
ing Research Group, Simon Fraser University. His re-
search interests include multimedia communications,
cloud computing, and crowdsourced live streaming.

Jiangchuan Liu (S’01–M’03–SM’08–F’17) re-
ceived the B.Eng. (cum laude) degree from Tsinghua
University, Beijing, China, in 1999, and the Ph.D.
degree from The Hong Kong University of Science
and Technology, Hong Kong, China, in 2003, both in
computer science.

He is a University Professor with the School of
Computing Science, Simon Fraser University, Burn-
aby, BC, Canada.

Prof. Liu is an NSERC E.W.R. Steacie Memorial
Fellow. He is also an EMC-Endowed Visiting Chair

Professor of Tsinghua University. He is an Associate Editor of the IEEE/ACM
TRANSACTIONS ON NETWORKING, the IEEE TRANSACTIONS ON BIG DATA, and
the IEEE TRANSACTIONS ON MULTIMEDIA. He was the recipient of the inaugural
Test of Time Paper Award of the IEEE INFOCOM in 2015, the ACM SIGMM
TOMCCAP Nicolas D. Georganas Best Paper Award in 2013, and the ACM
Multimedia Best Paper Award in 2012.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

